Mesenchymal marker expression is elevated in Müller cells exposed to high glucose and in animal models of diabetic retinopathy

نویسندگان

  • Ti Zhou
  • Di Che
  • Yuqing Lan
  • Zhenzhen Fang
  • Jinye Xie
  • HaiJun Gong
  • ChaoYang Li
  • Juan Feng
  • Honghai Hong
  • Weiwei Qi
  • Caiqi Ma
  • Zhonghan Yang
  • WeiBin Cai
  • Jun Zhong
  • Jianxing Ma
  • Xia Yang
  • Guoquan Gao
چکیده

Müller cells are retinal glial cells and exhibit a fibroblast-like phenotype and ability to migrate in diabetic retinopathy (DR). However, expression of mesenchymal markers, which promote fibrosis in various organs, has not been characterized in the diabetic retina. We examined changes in the expression of these markers in Müller cells exposed to high glucose and in animal models of diabetic retinopathy. High glucose conditions increased mesenchymal maker expression and migration in Müller cells. Snail, N-cadherin, Vimentin, β-catenin, and α-smooth muscle actin (α-SMA) levels were all dramatically increased in retinas from humans with diabetic retinopathy (DR) and from DR mouse models. In addition, Snail overexpression increased the expression of connective tissue growth factor (CTGF) and fibronectin, while Snail knockdown attenuated high glucose-induced increases in fibronectin and CTGF expression. These results demonstrate for the first time that mesenchymal markers are upregulated in retinas from a diabetic mouse model, and that Snail and N-cadherin levels are also increased in Müller cells exposed to high glucose. This suggests mesenchymal proteins may play a crucial role in the development of DR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential Role of Cyr61 Induced Degeneration of Human Müller Cells in Diabetic Retinopathy

The degeneration of Müller cells has been recognized to involve in the pathogenesis of diabetic retinopathy. However, the mechanism is not yet clear. This study is to explore the potential role of Cyr61, a secreted signaling protein in extracellular matrix, in inducing human Müller cell degeneration in diabetic retinopathy (DR). Twenty patients with proliferative diabetic retinopathy (PDR) and ...

متن کامل

Agmatine protects Müller cells from high-concentration glucose-induced cell damage via N-methyl-D-aspartic acid receptor inhibition

Neural injury is associated with the development of diabetic retinopathy. Müller cells provide structural and metabolic support for retinal neurons. High glucose concentrations are known to induce Müller cell activity. Agmatine is an endogenous polyamine, which is enzymatically formed in the mammalian brain and has exhibited neuroprotective effects in a number of experimental models. The aims o...

متن کامل

Effect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions

Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...

متن کامل

Potential Therapeutic Effect of TLR4-Primed Mesenchymal Stem Cells in Lessening Kidney Damages in Rat Model of Diabetic Nephropathy

Background and Aims: Substantial damage to the kidney tissue and diabetic nephropathy (DN) can be caused by chronic hyperglycemic conditions and exposure to a high level of blood glucose. In the current study, we explored the capability of adipose-derived mesenchymal stem cells (ADSCs) and Toll-like receptor-4-primed mesenchymal stem cells (TLR4-primed MSCs) on kidney regeneration, resolution ...

متن کامل

Co-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice

Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017